Alternative generalized Wolfe type and Mond-Weir type vector duality
نویسنده
چکیده
Considering a general vector optimization problem, we attach to it two new vector duals by means of perturbation theory. These vector duals are constructed with the help of the recent Wolfe and Mond-Weir scalar duals for general optimization problems proposed by R.I. Boţ and S.-M. Grad, by exploiting an idea due to W. Breckner and I. Kolumbán. Constrained and unconstrained vector optimization problems are seen as special cases of the initial primal vector optimization problem and from the general case we obtain vector dual problems of Wolfe type and Mond-Weir type for them by using different vector perturbation functions.
منابع مشابه
Sufficiency and duality for a nonsmooth vector optimization problem with generalized $alpha$-$d_{I}$-type-I univexity over cones
In this paper, using Clarke’s generalized directional derivative and dI-invexity we introduce new concepts of nonsmooth K-α-dI-invex and generalized type I univex functions over cones for a nonsmooth vector optimization problem with cone constraints. We obtain some sufficient optimality conditions and Mond-Weir type duality results under the foresaid generalized invexity and type I cone-univexi...
متن کاملSufficiency and Duality in Multiobjective Programming under Generalized Type I Functions
In this paper, new classes of generalized (F,α,ρ, d)-V -type I functions are introduced for differentiable multiobjective programming problems. Based upon these generalized convex functions, sufficient optimality conditions are established. Weak, strong and strict converse duality theorems are also derived for Wolfe and Mond-Weir type multiobjective dual programs.
متن کاملOptimality Conditions and Duality for Multiobjective Control Problems
Fritz John and Kuhn-Tucker type necessary optimality conditions for a Pareto optimal (efficient) solution of a multiobjective control problem are obtained by first reducing the multiobjective control problem to a system of single objective control problems, and then using already established optimality conditions. As an application of Kuhn-Tucker type optimality conditions, Wolfe and Mond-Weir ...
متن کاملHigher-Order Weakly Generalized Adjacent Epiderivatives and Applications to Duality of Set-Valued Optimization
A new notion of higher-order weakly generalized adjacent epiderivative for a set-valued map is introduced. By virtue of the epiderivative and weak minimality, a higher-order Mond-Weir type dual problem and a higher-order Wolfe type dual problem are introduced for a constrained setvalued optimization problem, respectively. Then, corresponding weak duality, strong duality and converse duality the...
متن کاملExtending the classical vector Wolfe and Mond-Weir duality concepts via perturbations
Considering a general vector optimization problem, we attach to it by means of perturbation theory new vector duals. When the primal problem and the perturbation function are particularized different vector dual problems are obtained. In the special case of a constrained vector optimization problem the classical Wolfe and Mond-Weir duals to the latter, respectively, can be obtained from the gen...
متن کامل